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ABSTRACT: NOAA’s Hazardous Weather Testbed (HWT) is a physical space and research framework 
to foster collaboration and evaluate emerging tools, technology, and products for NWS operations. 
The HWT’s Experimental Warning Program (EWP) focuses on research, technology, and communi-
cation that may improve severe and hazardous weather warnings and societal response. The EWP 
was established with three fundamental hypotheses: 1) collaboration with operational meteorolo-
gists increases the speed of the transition process and rate of adoption of beneficial applications 
and technology, 2) the transition of knowledge between research and operations benefits both 
the research and operational communities, and 3) including end users in experiments generates 
outcomes that are more reliable and useful for society. The EWP is designed to mimic the opera-
tions of any NWS Forecast Office, providing the opportunity for experiments to leverage live and 
archived severe weather activity anywhere in the United States. During the first decade of activity 
in the EWP, 15 experiments covered topics including new radar and satellite applications, storm-
scale numerical models and data assimilation, total lightning use in severe weather forecasting, 
and multiple social science and end-user topics. The experiments range from exploratory and 
conceptual research to more controlled experimental design to establish statistical patterns and 
causal relationships. The EWP brought more than 400 NWS forecasters, 60 emergency managers, 
and 30 broadcast meteorologists to the HWT to participate in live demonstrations, archive events, 
and data-denial experiments influencing today’s operational warning environment and shaping 
the future of warning research, technology, and communication for years to come.
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S erafin et al. (2002) stated the need for a national testbed, closely linked to an operational 
center, where suggestions for model improvements would be subjected to rigorous 
systematic evaluation. Participants would be intimately involved in the testing, with 

access to the full operational data stream and knowledge of the operational staff. The 
interactions between the research, academic, and operational communities would provide 
a direct transfer of research into operational forecasting while also working as a mechanism 
for the needs and challenges of operational forecasting to influence atmospheric research. 
While their concept of a national testbed focused on numerical weather prediction, Serafin 
et al. (2002) noted that additional test centers could focus on other aspects of transitioning 
research to operations. Over the past 18 years, NOAA established 12 testbeds and proving 
grounds to facilitate the transition of research capabilities to operational implementation.

NOAA’s Hazardous Weather Testbed (HWT) is both a physical space and research framework 
that fosters collaboration and the testing and evaluation of emerging tools, technology, and 
products for NWS operations. The HWT is a joint project between the NWS Storm Prediction 
Center (SPC), NSSL, and NWS Norman, Oklahoma, Weather Forecast Office (WFO) all located 
in the National Weather Center (NWC) building in Norman, Oklahoma. The goal of the HWT is 
to accelerate the transition of new meteorological insights and technologies into forecasting 
and severe weather warning operations. The HWT comprises two programs: the Experimen-
tal Forecast Program (EFP) and the Experimental Warning Program (EWP). The EFP focuses 
on the use of convection-allowing model ensembles to improve predictions of hazardous 
and convective weather events from a few hours to a week in advance across various spatial 
scales ranging from several counties to the continental United States (Kain et al. 2003, 2006; 
Clark et al. 2012, 2018, 2020; Gallo et al. 2017). The EWP focuses on severe weather research 
and technology to improve the WFOs’ severe weather warnings for hail, wind, and tornadoes.

The EWP began through outreach to individual WFOs to test new warning ideas, software, 
and algorithms. Prior to its formal development, operational tests and evaluations of NSSL’s 
single and polarimetric radar algorithms (e.g., Scharfenberg et al. 2003, 2005a), Warning Deci-
sion Support–Integrated Information (WDSS-II) radar displays (e.g., Scharfenberg et al. 2004), 
and initial Multi-Radar Multi-Sensor (MRMS) algorithms (including rotation tracks and hail 
diagnosis products; e.g., Stumpf et al. 2003a) were completed at local WFOs. However, during 
these operational tests and evaluations, it was difficult for forecasters and researchers to focus 
on product and algorithm evaluation during warning operations when life and property were 
at stake. Furthermore, rapid prototyping of new data and applications was not easy or even 
permitted by outside researchers within individual WFOs. The HWT provides an environment 
not only for rapid prototyping, but also for exploratory research and proof-of-concept test-
ing prior to operational implementation, embedding forecasters and researchers alongside 
software developers and training entities.

Following a proposal in 2005 to create an operational environment similar to a WFO within 
the HWT, the EWP formally became part of the HWT activities and WFO Norman forecasters 
were invited to participate. Since 2006, the EWP has continually expanded to include more 
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projects and forecasters. Forecasters outside of WFO Norman were invited by 2008. In 2010, 
a formal application process was created for forecasters across the NWS. In 2011, some ex-
periments included military forecasters. By 2014, hydrologists and broadcast meteorologists 
were invited to participate in select experiments. End users, including emergency manag-
ers, were first incorporated in testbed activities in 2010 and began routinely participating 
in experiments starting in 2015. Between 2008 and 2020, the EWP hosted 437 forecasters, 
61 emergency managers, and 38 broadcast meteorologists to evaluate products and tools for 
severe weather events.

While the experiment design and types of participants has evolved over the last 12 years, the 
goals of EWP experiments in the HWT originate from the same ideas: 1) assess the operational 
utility of new scientific concepts and technologies, 2) provide direct feedback from forecasters 
to developers on the strengths and limitations of their concepts, 3) offer insights to better meet 
the needs of operational forecasters, and 4) transfer knowledge of research concepts and ideas 
to the operational environment. This article details the evolution of the EWP, the data collection 
process, and highlights results and outcomes from experiments over the last decade.

Technical design of the HWT
The physical space of the HWT is between the SPC and WFO Norman in the National Weather 
Center. The left half of the room is configured for EWP operations and the right for EFP opera-
tions (Fig. 1). NWS forecasters use the Advanced Weather Interactive Processing System (AWIPS) 
to view meteorological datasets and issue products. To emulate the operations at a WFO, the 
EWP has used AWIPS since 2008 as the software foundation upon which all experiments are 
built (Kingfield and Magsig 2009). In 2012, the EWP transitioned to the second generation 
AWIPS (AWIPS2) environment 2 years before the operational deployment to the NWS. This 
early implementation of AWIPS2 served as a risk-reduction exercise for the larger forecasting 
community. The EWP was able to vet a number of potential problems with the AWIPS2 system, 
finding solutions prior to the national software rollout. Furthermore, it provided a sandbox for 
investigators to evaluate the implementation of their technologies, allowing for iterative devel-
opment and boosting readiness levels for future operational implementation.

Currently, the HWT has 14 standalone AWIPS2 workstations, two 27-in. monitors per 
workstation, nine large televisions in the corners of the room for situational awareness, two 
tables for group discussions, and a telephone to simulate communication between offices. For 
additional space, experiments can expand into the Development Laboratory (Fig. 1, bottom 
right), which is equipped with nine additional standalone AWIPS2 workstations, two moni-
tors per workstation, three large televisions on two walls, and a table for group discussions. 
Displays can be shared between the two rooms.

The investigators developing EWP experiments consult with the HWT technical leads to 
ensure their hypotheses can be properly evaluated with the AWIPS2 system. This includes 
coordination on the types of products ingested, whether new AWIPS2 code is needed, and 
whether external systems are required to support the experiment (e.g., web-based displays or 
data collection systems). The AWIPS2 workstations are configured for either live or archived 
meteorological data. Live weather experiments allow for “real world” evaluation of new 
algorithms and technologies as if these components were operational. Experiments using 
archived data allow for controlled conditions and with repeatable experimental processes 
while maintaining an operational environment. The systems can move between live and 
archive modes seamlessly so multiple experiments can run simultaneously.

During live operations, the EWP servers ingest all data from the Satellite Broadcast Network 
(SBN) that are available to any NWS WFO. While many numerical models are clipped to an 
NWS office’s area of responsibility, this ability was disabled to allow for participants to work 
in multiple NWS offices simultaneously during EWP operations. Higher-resolution WSR-88D 
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data are critical for NWS operations, but are not available on the SBN due to the high volume 
of information provided by each radar site. To incorporate this information into EWP opera-
tions, up to 10 Open Radar Product Generator (ORPG; Crum et al. 1998) processes can be 
activated via a web interface to ingest live Level-II data and provide a full suite of WSR-88D 
base and derived fields with minimal latency. Experimental datasets are ingested through 
the Local Data Acquisition and Dissemination (LDAD) system, similar to how NWS offices 
currently receive non-SBN data. All workstations can be localized to any NWS office and have 
the ability to issue simulated short-fused warning products (e.g., severe thunderstorm and 
tornado warnings) through the WarnGen application.

To support the ingesting of archived meteorological datasets for archive operations, soft-
ware was developed to feed information into AWIPS2 at a controlled pace. The ingest time 
could be either the archived event time or a false date and time to help reduce recognition of 
past events. Screen capture ability and large digital clocks were added to the display environ-
ments to document the forecasters’ actions and streamline subsequent data analysis by the 
experiment investigators.

EWP experiment design
Though the EWP began solely as a spring experiment focused on current weather, archive data 
allows experiments to occur year-round. Experiments in the EWP now consist of a mixture of 
live demonstrations, archive cases, and data-denial experiments. Typical experiments include 

Fig. 1. (top) Activities in the HWT during both EWP and EFP simultaneous experiments. (bottom 
left) Schematic of the room set up for the majority of EWP experiments; forecasters are typically 
working in pairs at adjacent workstations acting as a single NWS weather forecast office. (bottom 
right) EWP activities in the Development Laboratory within the National Weather Center. This 
extra space facilitates multiple experiments simultaneously.
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three to six NWS forecasters traveling to Norman, Oklahoma, each week with experiments 
lasting between 3 and 5 weeks. For most experiments, Monday is an orientation and training 
day, in which forecasters familiarize themselves with the experimental tools, software, and/
or datasets. Tuesday through Thursday are operational days. On these days, forecasters test 
experimental data and tools using live data and/or archived weather cases. Many experiments 
begin the day with an archive weather case and follow up with a live weather evaluation later 
that day. Each day concludes with surveys and a semi-structured discussion focused on the 
utility of the tools and data. Friday is typically reserved as a debrief day, in which participants 
reflect on their experiences with the data and tools throughout the entire week.

The design of each EWP project is tailored to specific research goals. As a result, EWP 
projects are, in general, either exploratory or experimental (also commonly referred to as 
confirmatory or a priori hypothesis testing). Exploratory projects typically involve rapid 
prototyping and queries of new algorithms, ideas, and concepts that have not fully been 
defined. These types of experiments aim to provide insight to researchers and developers 
on how a forecaster might interact with new technologies or data. Exploratory research may 
also focus more on the communication and collaboration of new concepts or data with end 
users. These exploratory experiments are typically flexible and adapt to feedback as the 
experiment progresses.

Experimental projects follow a specific outline of repeatable hypothesis testing across 
multiple participants from different backgrounds for a variety of weather and locations. This 
can provide a more thorough examination of how a new product/algorithm/tool would impact 
the operational environment, corresponding output, and information dissemination and 
use. In forecaster-focused research, these experiments focus primarily on product or instru-
ment evaluations and typically use data-denial or descriptive research tools, such as ranked 
surveys. Often, the goal is to provide statistical details on the use of products and algorithms, 
including the changes in opinion and behavior of forecasters over time. In end-user-focused 
research, these types of experiments can explore, for example, connections between indi-
vidual predispositions toward uncertainty information and preferences for product design.

As seen in the following examples, many experiments move from exploratory to more for-
mal experimental research over subsequent years as part of the EWP. This design allows for 
incremental development of larger concepts and ideas, while still making progress toward 
the operational transition of research. This repeated, incremental development ultimately 
provides better outcomes while also increasing the speed of the transition process and rate 
of adoption of beneficial applications and technology (Clark et al. 2012; Gallo et al. 2017).

Researchers use several methods to collect feedback from participants, including focus 
groups, surveys, and researcher notes (e.g., Calhoun et al. 2014). Some of the most valuable 
participant feedback collected during exploratory research is through focus groups and 
individual discussions. These conversations are crucial to gathering participant opinions 
about changes in workload, utility of the new tool/product/process, and interpretation of 
the information. During these discussions, researchers use a focus group discussion guide 
where specific topics are designated but emergent issues can be investigated in more depth 
by the focus group moderator. This flexibility is important because it allows participants to 
offer qualitatively rich insights on important topics that are not known a priori. Oftentimes, 
participants will highlight a challenge or benefit of the experimental product or system that 
researchers have not considered previously. The integration of users in a naturalistic decision 
environment is essential for the research-to-operations process.

In addition to focus groups, researchers also use surveys to collect data before, during, 
and after the participants are introduced to the experimental items. This method allows for 
the collection of anonymous data and unfiltered opinions. Over numerous experiments, sur-
veys can also be collated for meaningful statistical analysis of more hypothesis-driven work. 
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Researchers often employ a pretest and posttest method to elicit feedback about information 
gaps and then assess whether or not the new product/tool/system helped improve those gaps. 
While most surveys are designed with close-ended questions for ease of analysis, open-ended 
questions are also employed to gather more specific details about the benefits and challenges 
of the experimental items.

During many experiments, participants are paired with a researcher that observes what 
data are being used and how they are used for warning decisions. Researchers take notes of 
actions, decisions, and challenges the participants are experiencing, particularly related to 
interface usage and workflow. These researchers also ask questions and clarify why a par-
ticipant is using a new tool in certain ways to elicit feedback about potential modifications 
to experimental products. The notes taken during the simulations are useful for researchers 
to reference during data analysis because they add context to survey responses and focus 
group notes.

Finally, if the primary goal of the experiment is to determine whether the experimental 
datasets help forecaster warning decisions, blog posts can be a useful way for forecasters 
to express their thoughts as they go through the warning process. Participants are encour-
aged to take screen captures of what products they are looking at and write a short blog post 
explaining how the experimental products played a role in their warning decision. These 
posts are particularly helpful because they are written from the participants’ perspective. 
Having participants explain the benefits and challenges of an experimental product in their 
own words highlights details that researchers may not have considered previously.

Past and current EWP experiments
Experiment names/subjects, acronym definitions, years of activity, and associated publica-
tions are included in Table 1. A brief summary including any unpublished results or unique 
methods is included for many of the experiments below.

Radar experiments.
MRMS-SeveRe. Prior to becoming operational (Smith et al. 2016), the MRMS-Severe algo-
rithms involved several years of iterative testing and development. Initial development was 
coordinated with individual WFOs. The associated limitations of testing MRMS products in 
WFOs during severe weather operations was part of the impetus for the creation of the EWP. 
Once in the HWT, investigators employed flexible testing methods including open-ended 
questions and discussions during a combination of live weather and archived cases that they 
could not have completed during actual warning operations. These exploratory experiments 
provided guidance for additional development on the most beneficial algorithms (e.g., rotation 
tracks and the maximum expected size of hail) and allowed for incremental modifications to 
visualizations to appropriately fit within the typical forecaster workflow. Later testing used 
archived cases in a controlled environment to examine whether MRMS products could re-
duce false alarm area, improve polygon alignment, speed up storm diagnosis, and enhance 
lead time. These tests helped determine best practices for use and were coordinated with 
the training community to provide recommendations for integration with other operational 
products (Bates et al. 2015).

PhaSed aRRay RadaR InnovatIve SenSIng exPeRIMent (PaRISe). Using multiple cases of 
tornadic and severe storms in simulated operational environments with archive data, the 
PARISE experiments investigated the hypothesis that higher temporal resolution radar data 
would positively impact the warning decision process (Heinselman et al. 2012, 2015). These 
experiments used a controlled environment providing different temporal resolution data (e.g., 
4.5-min versus sub-1-min updates) to different forecasters. This research established that 
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additional lead time and increased probability of detection (POD) was directly related to access 
to the higher temporal resolution data. The PARISE experiments (Heinselman et al. 2015; 
Bowden et al. 2015) emphasized discussion with forecasters postevent to establish how 
phased-array radar data were blended into the forecaster workflow to account for the addi-
tional lead time. Later experiments combined this retrospective discussion with eye-tracking 
software to better understand the specific attention and cognitive process of the warning 
forecaster (Wilson et al. 2016).

CollaboRatIve adaPtIve SenSIng of the atMoSPheRe (CaSa). The CASA experiment evaluated 
the use of gap-filling radars during warning decisions and the associated impacts to end-user 
communication (Bass et al. 2011; Rude et al. 2012). Similar to the MRMS experiments, initial 
years of the CASA experiment were exploratory. These experiments focused on the strengths 

Table 1. The experiment names, year(s), principal investigator(s), and relevant references for the experiments conducted in 
the EWP.

Experiment Years Principal investigators References

Multi-Radar Multi-Sensor  
(MRMS) Severe

2005,  
2008–10,  
2013–14

T. Smith, G. Stumpf, K. Scharfenberg,  
K. Manross, J. LaDue and K. Ortega

Smith et al. (2003); Stumpf et al. (2003a,b);  
Scharfenberg et al. (2005b); LaDue et al. (2013) 

Phased Array Radar Innovative  
Sensing Experiment (PARISE)

2008–10,  
2014–15

P. Heinselman, K. Wilson, D. Kingfield LaDue et al. (2010); Heinselman et al. (2012, 2015);  
Bowden et al. (2015); Bowden and Heinselman  
(2016); Wilson et al. (2016, 2017a,b, 2018)

Collaborative Adaptive Sensing  
of the Atmosphere (CASA)

2007–10 B. Philips, J. Brotzge, T. Smith, G. Stumpf Philips et al. (2008, 2010); Brotzge et al.  
(2010); Bass et al. (2011); Rude et al. (2012)

Dual-Polarization Hail Size  
Discrimination

2013 K. Ortega Ortega et al. (2016)

Radar Convective Applications 2018–21 B. Smith, T. Sandmael Sandmael et al. (2020)

Conditional Probability  
of Tornado Intensity

2018 B. Smith, M. Mahalik

GOES–JPSS 2009–21 S. Goodman, D. Lindsay, C. Siewart, B. Line,  
M. Bowlan, K. Calhoun

Bedka et al. (2010); Sieglaff et al. (2011);  
Bikos et al. (2012); Walker et al. (2012);  
Goodman et al. (2013); Cintineo et al. (2014);  
Schmit et al. (2014); Line et al. (2016); Calhoun  
(2018, 2019); Bruning et al. (2019); Esmaili et al.  
(2020)

Lightning Jump Algorithm 2013–16 K. Calhoun, L. Carey, D. Kingfield, E. Schultz, Chronis et al. (2014); Calhoun et al. (2015)

Earth Networks Total  
Lightning Network

2015–16 K. Calhoun, D. Kingfield, T. Meyer Calhoun et al. (2016)

3DVAR 2011–12 K. Calhoun, T. Smith, J. Gao, D. Stensrud Calhoun et al. (2014)

OUN-WRF 2011–14 G. Garfield, A. Anderson

Variational Local Analysis  
and Prediction System

2013–14 H. Jiang, Y. Xie, S. Albers, I. Jankov,  
L. Wharton, Z. Toth

Jiang et al. (2015)

MRMS Hydrometeorological  
Testbed–Hydrology

2014–16,  
2018–19

J. Gourley, S. Martinaitis, P.-E. Kirstetter,  
H. Vergara, K. Wilson, N. Yussouf

Argyle et al. (2017); Gourley et al. (2017);  
Martinaitis et al. (2017, 2020); Yussouf et al.  
(2020)

Probabilistic Hazard  
Information (PHI)

2008,  
2014–21

G. Stumpf, T. Smith, K. Manross, K. Ortega,  
K. Calhoun, C. Karstens, J. Correia, C. Ling,  
J. James, L. Rothsfusz

Kuhlman et al. (2009); Karstens et al.  
(2015, 2018); Ling et al. (2015, 2017);  
Stumpf et al. (2015, 2018); Bates et al. (2019);  
James et al. (2020); Manross et al. (2021)

PHI End Users 2015–20 K. Berry, H. Obermeier, K. Klockow-McClain,  
D. LaDue, M. Krocak, K. Wilson

Nemunaitis-Berry and Obermeier (2017);  
Klockow-McClain et al. (2020); Obermeier et al.  
(2018, 2019, 2020)

Severe Weather and Society  
Dashboard

2020 K. Klockow-McClain, J. Ripberger, M. Krocak Ripberger et al. (2019, 2020)
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and limitations of the new gap-filling technology and assessed other potential benefits of the 
data. Later years of the CASA experiments wished to expressly determine: 1) which fine-scale 
rotations warranted a warning, 2) how 1-min updates resolved forecaster uncertainty, and 
3) a model for decision-making and communication interactions among spotters, emergency 
managers, and NWS forecasters for severe weather.

RadaR ConveCtIve aPPlICatIonS. The ongoing NWS Radar Operations Center (ROC) experiments 
examine new and updated single-radar products and algorithms for the WSR-88D network 
including 1) velocity-derived azimuthal shear (AzShear), 2) a new mesocyclone detection 
algorithm (MDA), and 3) a new tornado detection algorithm (TDA). The primary goal of these 
evaluations is to determine if the new algorithms are justified replacements for the legacy 
versions. Results from 2019 emphasized the impact single-radar AzShear could have on 
NWS warning operations as it highlights key features in velocity data that are precursors to 
tornadic circulations, especially those associated with challenging quasi-linear convective 
systems. Crucially, investigators also learned that any updates to the MDA and TDA would 
be ineffectual unless the visualizations were improved from the original design. In 2019, the 
initial implementation of the new algorithms mimicked the same table listing and readout as 
the original MDA/TDA (Fig. 2, left). Forecasters informed researchers that it was the clunky 
visualizations combined with a high false alarm rate that made the legacy detection algorithms 
inadequate. Thus, subsequent development following the initial experiment focused on updat-
ing the visualization from the undesirable table design to an object-based interactive design 
with temporary readouts that did not interfere with ongoing analysis (Fig. 2, right). Virtual 
experiments in 2021 examine whether the new foundation for the MDA and TDA increases 
forecaster use and satisfaction with the algorithms.

Satellite and lightning experiments. 
goeS–JPSS. Prior to the launch of the GOES-R series of satellites, there was keen inter-
est in demonstrating new capabilities and algorithms as well as providing operational 
forecasters a chance to increase knowledge of the upcoming upgrades. Since the new 
GOES series had temporal and spatial resolutions that allow for use in the prediction and 
diagnosis of hazardous weather, Satellite Proving Ground (initially referred to as “GOES-R 
Proving Ground”; Goodman et al. 2012) evaluations were included in the EWP. Today, the 

Fig. 2. (left) Original implementation of the tornado detection algorithm and (right) updated version based on fore-
caster feedback. New visualization follows the design of the ProbSevere algorithm seen by forecasters in the satellite 
experiments.
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EWP continues to provide the GOES and Joint Polar Satellite System (JPSS) programs an 
opportunity each spring to conduct demonstrations of baseline, future capabilities, and 
experimental products.

The initial satellite demonstrations focused on preparation for the launch of the GOES-R 
satellite. In 2009, this first demonstration was limited to weather briefings and overviews of 
product performance to participants. By 2010, the importance of including the satellite-based 
products directly into forecaster software and workflow was keenly noted by the principal in-
vestigators and the data and algorithms were examined within AWIPS2 for the first time. This 
change provided the opportunity to more directly understand the impact on the storm diagnosis 
and severe weather warnings. These initial experiments consisted of expected baseline and 
level-2 products and algorithms including convective initiation nowcasting and probabili-
ties (Sieglaff et al. 2011; Walker et al. 2012), overshooting top and thermal couplet detection 
(Bedka et al. 2010), total lightning detection and a pseudo-Geostationary Lightning Mapper 
Product (Goodman et al. 2013), simulated satellite imagery (Bikos et al. 2012), and a 0–3 h severe 
hail probability (a preliminary version of the ProbSevere Statistical Model; Cintineo et al. 2014).

In 2013, to better prepare a wider audience of NWS operational forecasters for the new 
GOES-R series of satellites, participants were asked to participate in a webinar hosted by the 
NWS Warning Decision Training Division (WDTD) called “Tales from the Testbed.” Forecast-
ers presented the experimental products and how they performed during different events 
and locations throughout the week. In 2014, GOES-14 Super Rapid Scan Operations were 
introduced to see how the higher temporal resolution expected from the GOES-R series im-
pacted use of satellite data during warning operations (Schmit et al. 2014; Line et al. 2016). 
Feedback from the forecasters in the EWP experiment during these first five years helped to 
determine which products would be integrated into the GOES-R baseline and level-2 product 
dissemination after launch.

Beginning in 2015, JPSS algorithms from the NOAA Unique Combined Atmospheric Pro-
cessing System (NUCAPS) were included to assess the value of soundings from polar orbiting 
satellites in filling the temporal and spatial gaps between the standard NWS daily sounding 
radiosonde measurements. As Esmaili et al. (2020) discuss, this EWP evaluation both helped 
NUCAPS developers gain a better appreciation of operational requirements and limitations. 
This led to improvements of NUCAPS functionality within sounding toolkits (such as within 
the SHARPpy software by Blumberg et al. 2017) and focused investigators toward issues that 
impact usability in the severe weather environment (such as more accurately representing 
the boundary layer).

Following the launch of the GOES-R satellite, activity during 2017–19 spring experiments 
shifted to focus on both validation of algorithms and testing new data [e.g., the Geostationary 
Lightning Mapper (GLM)]. Forecasters evaluated new convectively applicable baseline prod-
ucts, such as total precipitable water, derived stability indices, and derived motion winds, 
as well as multispectral (red–green–blue) composites and channel differences. Not only did 
the 1-min imagery aid in the initiation and updraft monitoring phase of convection, but it 
also aided forecasters in null cases and in identifying areas that were more stable and might 
not result in storm development.

The baseline Legacy Atmospheric Profile retrieval algorithms and layer predictable water 
products for moisture and stability coverage were typically used prior to convective initia-
tion to analyze gradients. However, use of these products were minimal in the warning and 
mesoscale analysis environment as products were only available every 30 min with forecast-
ers commonly noting that blending with a higher-resolution convective allowing model over 
CONUS for 5- to 15-min products would be much preferred.

Additionally, the initial presentation of GLM data within AWIPS2 in 2017 was quickly 
found to be problematic. EWP scientists strongly suggested that the data and associated 
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visualization should not be provided to NWS operational offices until both geolocation errors 
within the ground-system and the initial visualization were fixed. This feedback drove a 
focused effort between academic and federal partners to develop gridded imagery that re-
tains the quantitative physical measurements and better illustrates how lightning discharges 
illuminate thunderstorms (Bruning et al. 2019). The new gridded GLM products were part of 
the 2018 and 2019 EWP demonstrations where feedback from forecasters helped shape the 
individual product visualizations and determined new products, such as minimum flash 
size, for operational implementation and use (Calhoun 2018, 2019). As a new instrument 
with unique visualizations, forecasters reported having a subject matter expert available to 
answer questions on GLM data made the greatest impact on product understanding and use 
throughout the week.

Overall, the feedback from 10 years of GOES and JPSS experiments has greatly shaped 
not only the products and visualizations available to the NWS, but has also produced train-
ing and best practices for the use of satellite data in hazardous weather forecasting for all 
forecasters across the NWS.

lIghtnIng JuMP algoRIthM. In severe storms, rapid increases in lightning flash rate, or 
“lightning jumps,” are coincident with pulses in the storm updraft and typically precede 
severe weather at the surface by tens of minutes. In support of future GLM capabilities, 
different implementations of a total lightning jump algorithm (LJA) were tested during the 
2013–16 EWP Spring Experiments in coordination with the GOES–JPSS proving ground 
demonstrations. The goals were to determine if the LJA could be used by NWS forecasters 
to enhance situational awareness, diagnose convective trends, and potentially improve 
the short-term prediction of severe weather following the results of Schultz et al. (2009, 
2011). Initially, LJA testing was limited to regions with Lightning Mapping Arrays. Later, 
the LJA was expanded to include data from Earth Networks Total Lightning Network 
(ENTLN) to test CONUS-wide.

The LJA greatly benefitted from repeated testing and incremental development. It initially 
focused solely on the 2-sigma value (or twice the standard deviation of the 1-min flash rate) 
and initial experiments quickly informed researchers that this one-size-fits-all approach 
would not work. Between annual demonstrations, significant changes were made to the 
algorithm and visualization to show not only the degree of the jump (e.g., the standard de-
viation), but also the associated trends (Fig. 3). While one jump was important, forecasters 
were also interested in noting cases where multiple jumps happened for the same storm. 
Similarly, while forecasters liked the rapid 1- or 2-min updates, they found sometimes they 
missed the peak sigma value, so a 5-min max sigma product (updating every minute) was 
created. By the 2016 evaluation, primary feedback focused on the visualization; suggestions 
included either moving the visualization to an opaque display or to an outline with details in 
a “mouseover” for the current flash rate to facilitate quick storm comparisons, similar to the 
ProbSevere product (Fig. 3). This demonstration also highlighted how reviewing products in 
an operational setting next to other products is beneficial, not only because it provides context 
relative to operational products, but this can also spur advancements in other developmental 
products. In the case of the LJA and ProbSevere, the corresponding evaluations led to discus-
sions across principal investigators from both projects, ultimately leading to the addition of 
lightning data to ProbSevere which reduced the false alarm rate (Cintineo et al. 2018). The 
1-min update and 5-min max LJA products were equally regarded as individual forecasters 
generally chose depending on the operational focus of the day. As such, it was suggested 
that both move forward as operational products. Forecaster feedback was incorporated into 
MRMS training through the WDTD and both the 5-min and 1-min products became part of 
operational MRMS version 12 in 2020.
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eaRth netwoRkS’ dangeRouS thundeRStoRM aleRtS. Earth Networks, Incorporated (ENI), 
indicated the potential for their total lightning data and automated Dangerous Thunderstorm 
Alerts (DTA; Liu and Heckman 2012) system to help increase lead times over current NWS 
severe weather and tornado warnings, while maintaining a similar POD.

 To test the value and impact of ENI total lightning data and algorithms, both the ENTLN 
data and products from the DTA system were evaluated during two experiments.

The first experiment used data denial and rotating control group testing to evaluate the 
hypothesis that different data access would affect forecaster warning decisions. This experi-
ment included 18 NWS forecasters over 6 weeks in 2014. Each forecaster was isolated and 
rotated through a series of six 2-h-long archived weather-warning simulations across a variety 
of convective regimes ranging from marginally severe to high-impact tornadic events. Using 
a repeated measures design, the forecaster was randomly assigned one of three tiers of data 
during the simulation: 1) the full suite of WSR-88D radar products, 2) ENTLN total lightning 
point data and products available in Tier 1, or 3) ENI total lightning cell tracking, flash rate 
products, and associated alert polygons in addition to all products available in Tier 2.

All tiers performed similarly with the Tier 2 group (total lightning + radar) performing 
slightly better in terms of overall false alarm ratio and POD. Based on these skill scores, 
forecasters that were not already experts at radar interrogation and severe storm forecast-
ing saw the most benefit from the inclusion of total lightning data and associated products 
during warning operations. Overall, the indicated that while the forecasters found the total 
lightning and derived products useful in warning operations, the DTA polygons themselves 
had limited value.

A successive live weather evaluation was completed during the 2015 spring experiment. 
Like other live experiments, the operational domains were decided daily based on likelihood 
of severe weather. During this experiment, we operated in 42 different NWS county warning 
areas with 31 forecasters evaluating ENTLN total lightning and associated products. This 
second experiment provided insight on how the forecasters would use the data for warning op-
erations alongside all currently available products and provided a stress test for the timeliness 
and usability of the ENTLN data and tools within operations. Similar to year one, forecasters 
gravitated to the total lightning data and storm-based derived flash rate trend information 
as well as the time series display. Again, multiple forecasters noted the three layers of alerts 
(including the DTAs) cluttered the screen and had too high of a false alarm rate to add value 
to the warning process. However, a majority of forecasters did find value in the total lightning 
tools, such as the storm tracking and time series information. Furthermore, some forecasters 

Fig. 3. Forecaster display from AWIPS2 during HWT evaluation on 3 May 2016 in Wake County, NC, showing experimental 
warnings with MRMS 0.5 km MSL composite reflectivity, (left) ProbSevere or (right) lightning jump algorithm. As noted 
in a blog post by the forecaster, the forecaster had high confidence in extending the warning due to a 9-sigma lightning 
jump (as shown in the mouseover).
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required these additional tools and derived products to feel comfortable utilizing the total 
lightning data in operations due to limited training currently available on lightning data.

Modeling/data assimilation experiments.
3dvaR. An adaptive storm-scale three-dimensional variational data assimilation (3DVAR) 
analysis system was introduced to forecasters as part of the Spring Experiment in 2011 and 
2012 (Calhoun et al. 2014). This exploratory research investigated a possible implementation 
of Warn-on-Forecast (Stensrud et al. 2009) concepts with operational forecasters through the 
visualization of dynamically consistent gridded analyses driven by data assimilation. The 
storm-scale analyses provided updraft, storm-top divergence, and vorticity in addition to 
multilevel wind vectors. While forecasters found that the analyses added confidence in warn-
ing decisions, often with additional lead time when storms were close to a WSR-88D radar, 
data latency as little as 5 min prevented consistent use within warning operations as new 
radar volumes were completed within this period. As such, forecasters placed more weight 
on the new radar information that could highlight new and/or different information from the 
3DVAR analyses. Even with the positive feedback by forecasters, transition to operations was 
not continued due to the high impact of data latency.

oun-wRf. In 2011, an exploratory investigation of the Norman Weather Forecast Office 
Weather Research Forecast Model (OUN-WRF) was created to better understand the potential 
impacts of higher-resolution and locally relevant numerical weather data on convective-
scale analysis and warnings to better inform the development of concepts such as Warn-on-
Forecast (Stensrud et al. 2009). Unlike high-resolution models run at national centers, the 
configuration of the local OUN-WRF Model for these experiments was flexible, allowing for 
parameterization sets to be optimized daily for expected weather over the Southern Plains. 
Through discussions and use, participating forecasters acquired expertise in identifying the 
impact of parameterizations, enabling them to account for the impact on a forecast. Inves-
tigators used the experiment to better understand not only which particular products were 
of use for situational awareness and warnings, but also how they were used. Iterative years 
of the experiment tuned the type of products available (as products such as updraft helicity 
were found to be especially relevant) and also tested how model cycling and time-lagged 
ensembles could be visualized within the forecaster workflow. The end result of this experi-
ment was a transfer of knowledge not only to the operational community, but also within 
the high-resolution modeling community regarding product development and visualizations 
for operations.

Flash flood experiments. The Hydrometeorology Testbed (HMT) MRMS–Hydrology (HMT-
Hydro) experiments used a structured framework to better understand how experimental 
NWP forecasts and hydrologic model guidance affected warnings for flash flood events 
(Martinaitis et al. 2017, 2020). Forecasters and hydrologists from NWS WFOs and River 
Forecast Centers evaluated the Flooded Locations and Simulated Hydrographs (FLASH; 
Gourley et al. 2017) system, use of the Hazard Services software (Argyle et al. 2017) with 
initial assessments of flash flood recommenders (Martinaitis et al. 2017), and coupled proba-
bilistic hydrologic modeling with probabilistic ensemble QPFs (Yussouf et al. 2020) across 
multiple years of testing. These experiments uniquely created collaborations between the 
Weather Prediction Center’s annual Flash Flood and Intense Rainfall (FFaIR) experiment 
(Barthold et al. 2015) and HMT-Hydro experiments. This joint effort successfully simulated 
the workflow between two testbed environments across multiple national centers in dif-
ferent time zones (e.g., Martinaitis et al. 2020). The most recent experiments compared the 
output of forecasters using the experimental products to the operational products to provide 
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an objective measure of increased lead time and POD, while using discussions and surveys 
to better understand the various strengths and challenges and participant perceptions on 
how new products influenced flash flood operations. Similar to other EWP experiments such 
as the GLM demonstration, discussion with participants underscored the impact of having 
subject-matter experts present with forecasters and other end users (Martinaitis et al. 2020). 
Future work will examine the implementation of the probabilistic flash flood data into the 
Hazard Services software platform.

Warning-paradigm experiments. In 2008, scientists began testing the concept of a rapidly 
updating high-resolution gridded Probabilistic Hazard Information (PHI) system with fore-
casters as part of the EWP. During these initial exploratory experiments, forecasters were 
asked to create PHI in lieu of the current deterministic warnings available to the public 
today. However, researchers found forecasters needed a baseline probability for calibration 
across events (Kuhlman et al. 2008). PHI has greatly evolved since this first implementation, 
based on both forecaster and end-user feedback as well as through the incorporation of 
new algorithms and tools that better address the ideas of Forecasting a Continuum of Envi-
ronmental Threats (FACETs; Rothfusz et al. 2018). The major emphasis of more recent PHI 
experiments has been on initial testing of concepts related to human–computer interaction 
(e.g., Karstens et al. 2015, 2018) while generating short-fused high-impact PHI for severe 
weather. Human factors (Ling et al. 2015; James et al. 2020) and end-user experiments with 
emergency managers and broadcast meteorologists (described in more detail below) have 
been coordinated with many of the NWS forecaster experiments providing an end-to-end 
experiment to better understand the impact of PHI from creation to use. Simultaneously, 
we continue to test these refined concepts and methodologies from earlier PHI prototype 
experiments and transition them into an experimental version of Hazard Services (the 
next generation warning tool for the NWS), including initial steps toward this paradigm 
through threats-in-motion (Stumpf and Gerard 2021), for further testing and evaluation 
prior to deployment.

End user experiments. The inclusion of core partners of the NWS within experiments 
adds an extra layer to discussions and product use and creation. In 2014, the GOES–JPSS 
experiment included roughly one broadcast meteorologist each week, assuming the role of 
warning forecaster. The benefits of incorporating broadcasters in the GOES–JPSS experiment 
included familiarizing them with NWS operations, the warning decision process, AWIPS2, 
and the challenges forecasters face. Additionally, broadcasters contributed unique feedback 
and provided NWS forecasters with the broadcast perspective on severe weather warning 
coverage. As a result of the engagement and shared edification of all partners, the EWP made 
a concerted effort to incorporate NWS core partners into more experiments going forward.

Emergency managers and broadcast meteorologists were incorporated into PHI experiments 
as both standalone participant groups and collective integrated warning team participants 
dating back to 2015. Research with these core partners focuses on how the continuous flow of 
probabilistic information from days before the event through the warning time scale may be 
received, understood, and used to make important decisions (Klockow-McClain et al. 2020). 
Emergency management participants simulated decisions for towns or areas that matched 
the scale of their jurisdiction (e.g., university, city, county, state). Researchers investigated 
how the experimental products changed the decisions they made or the timeframes during 
which they made decisions during severe weather events. Broadcast participants performed 
typical job functions in a mock television studio environment (Fig. 4) as they received 
experimental probabilistic information from forecasters. Research protocols were used to 
systematically study how broadcast meteorologists interpreted, used, and communicated 
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probabilistic information and rapidly updating warnings to their hypothetical viewing audi-
ence (Obermeier et al. 2018, 2019, 2020).

Social data experiments. The 2020 Severe Weather and Society Dashboard experiment was 
conducted to assess the utility of a new type of product with forecasters—one that provides 
social and behavioral data about the communities that NWS forecasters serve. Containing 
data from the annual Severe Weather and Society Survey (Silva et al. 2017, 2018, 2019; 
Ripberger et al. 2019, 2020), the dashboard was the first primarily social science tool to be 
tested in the HWT. A wide variety of data were presented to participants, from composite in-
dices that measure tornado warning reception, understanding, and response, to geographic 
risk perceptions of different weather hazards and demographic variables. The overall utility of 
the dashboard tool was evaluated along with the usefulness of the data within the dashboard 
and the time scales on which the data would be most useful.

Researchers are pursuing paths for operationalization of the dashboard and future com-
munity-level data. Surveys focusing on other weather hazards including tropical cyclones, 
winter storms, and fire weather are currently under development, with future plans to create 
dashboards similar to the severe weather prototype.

The future of the EWP
During the period of the COVID-19 pandemic, the HWT faced new challenges that are shaping 
the future of EWP operations. The inability to host activities in person resulted in the transi-
tion to virtual activities. Initial virtual efforts were limited, but 2021 EWP evaluations use 
AWIPS2 in the cloud for five experiments. Moving forward, the HWT EWP hopes to incor-
porate a combination of in-person and virtual activities.

Another shift in HWT experiment design is to expand across the EFP and EWP bridging 
across time scales and reference classes. Motivated by FACETs (Rothfusz et al. 2018), severe 

Fig. 4. Broadcast meteorologists participating in an EWP experiment in a mock television studio. 
Participants took turns broadcasting on the wall and attending to social media responsibilities.
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weather research is now focus-
ing on providing a continuous 
flow of information across the 
entire space–time continuum 
of a severe weather event. This 
approach allows researchers to 
consider all reference classes 
and reference frames from days 
before to within minutes of an 
event (Klockow-McClain 2019; 
Klockow-McClain et al. 2020) to 
ensure they tell a consistent and 
cohesive story. Expanding ex-
periments beyond only forecast 
or warning time scales will also 
allow for the inclusion of interac-
tions that occur between national 
centers and WFOs.

We expect funding and inter-
est in the research-to-operations 
process to continue to bring a di-
verse group of projects and ideas 
through the EWP. Though the 
scope of individual projects may 
change, the EWP will continue to 
provide a means of transitioning 
knowledge, new technologies, 
and applications to operations 
while also exploring innova-
tive concepts and ideas that will 
shape the future of warning ap-
plications and research for years 
to come.

Acknowledgments. The HWT EWP 
was made possible by the many 
dedicated participants, investiga-
tors, and internal support staff over 
the last decade. Special thanks to 
Dave Andra, Adrian Campbell, Vicki Farmer, Mike Foster, Gabe Garfield, Kim Klockow-McClain, 
William Line, Jonathan Madden, Kevin Manross, Justin Monroe, James Murnan, Kiel Ortega, Lans 
Rothfusz, Thea Sandmael, Kevin Scharfenburg, Russ Schneider, Brandon Smith, and Alex Zwink. 
HWT Infrastructure Support was provided by NOAA/Office of Oceanic and Atmospheric Research/
Weather Program Office (WPO). Travel support for forecasters and participants was provided by the 
GOES-R program office, WPO, NWS, and individual grants from Private Investigators. Funding was 
provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA–University of Oklahoma 
Cooperative Agreement NA16OAR4320115, U.S. Department of Commerce.

Data availability statement. No datasets were generated or analyzed during the current study.

The EWP in a Virtual Environment
While impossible to entirely replicate the operational and collaborative 
capabilities of the HWT, remote collaboration and evaluation provides 
an opportunity for continued testing and evaluation instead of shutting 
experiments completely down. The COVID-19 era has had impacts on 
multiple sectors, and the EWP experiments are no different. The initial 
onset provided little time to fully prepare to replicate the EWP testing and 
operational capabilities in a virtual environment in spring 2020. However, 
through much development and dependence on virtual and cloud-based 
platforms, multiple experiments are testing the waters of remote evalu-
ation in 2021. From previous lessons learned, we knew the ability to use 
the operational software would be crucial for testing items near transi-
tion to operations. Leveraging AWIPS2 in the cloud as the backbone for 
testing, we are using a combination of WES-2 Bridge software from the 
NWS Warning Decision Training Division and locally developed software 
to continue experiments using archive data. Live weather evaluations use 
local data managers to provide data to the cloud platform. As expected 
though, a completely new environment brings complications; we are now 
dependent on participant home hardware, bandwidth and capacity, and 
consideration of time zones in planning experiments. This requires multiple 
hours for rehearsal of logistics, dependencies, and platform configurations. 
While remote collaboration and evaluation can provide to an increased 
number and wider array of participants without additional travel costs, 
we are finding a need to simplify archive cases and evaluations to meet 
the new limitations. Even with an increased number of collaborative tools, 
such as Google Meet and Slack, we are limited in how much of the opera-
tional environment we can recreate. We currently find ourselves isolating 
forecasters into multiple Meets to maintain simultaneous discussions with 
principal investigators, but this loses the collaborative aspect of being in 
the same location—handing off storms and discussions of who is covering 
what threat becomes a juggling activity bouncing across multiple Google 
Meets and crossing messages as opposed to casually asking a question 
across a room. Additionally, troubleshooting technical problems on remote 
desktops leads to full break in data collection and discussion as the 
forecaster is forced to participate in the troubleshooting process. Yet, even 
with these limitations, we have still been able to continue testing products, 
ideas, and algorithms for operational implementation. Forecasters that 
have participated in virtual EWP experiments in 2021 have said they would 
definitely participate again virtually, but overall prefer the in-person expe-
rience and collaborative aspect of being in the same location with other 
forecasters, scientists, and end users. Looking years in the future, we hope 
to use this virtual experience to find a balance between the benefits of 
in-person and remote experiments.
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